
A Unified Resource Scheduling Framework for Heterogeneous Computing
Environments

Ammar H. Alhusaini � and Viktor K. Prasanna�

Department of EE-Systems, EEB 200C
University of Southern California
Los Angeles, CA 90089-2562

Ph: (213) 740-4483
fammar + prasannag@usc.edu

C.S. Raghavendra
The Aerospace Corporation

P. O. Box 29257
Los Angeles, CA 90009
Ph: (310) 336-1686
raghu@aero.org

Abstract

A major challenge in Metacomputing Systems (Compu-
tational Grids) is to effectively use their shared resources,
such as compute cycles, memory, communication network,
and data repositories, to optimize desired global objectives.
In this paper we develop a unified framework for resource
scheduling in metacomputing systems where tasks with var-
ious requirements are submitted from participant sites. Our
goal is to minimize the overall execution time of a collection
of application tasks. In our model, each application task is
represented by aDirected Acyclic Graph (DAG). A task con-
sists of several subtasks and the resource requirements are
specified at subtask level. Our framework is general and it
accommodates emerging notionsof Qualityof Service (QoS)
andadvance resource reservations. In this paper, we present
several scheduling algorithms which consider compute re-
sources and data repositories that have advance reserva-
tions. As shownby our simulationresults, it is advantageous
to schedule the system resources in a unified manner rather
than scheduling each type of resource separately. Our al-
gorithms have at least 30% improvement over the separated
approach with respect to completion time.

1. Introduction

With the improvements in communication capability
among geographically distributed systems, it is attractive to
use diverse set of resources to solve challenging applica-
tions. Such Heterogeneous Computing (HC) systems [12,
17] are called metacomputing systems [26] or computa-
tional grids [8]. Several research projects are underway,

�Supported by the DARPA/ITO Quorum Program through the Naval
Postgraduate School under subcontract number N62271-97-M-0931.

including for example, MSHN [22], Globus [13], and Le-
gion [19], in which the users can select and employ re-
sources at different domains in a seamless manner to execute
their applications. In general, such metacomputing systems
will have compute resources with different capabilities, dis-
play devices, and data repositories all interconnected by het-
erogeneous local and wide area networks. A variety of tools
and services are being developed for users to submit and ex-
ecute their applications on a metacomputing system.

A major challenge in using metacomputing systems is
to effectively use the available resources. In a metacom-
puting environment, applications are submitted from vari-
ous user sites and share system resources. These resources
include compute resources, communication resources (net-
work bandwidth), and data repositories (file servers). Pro-
grams executing in such an environment typically consist
of one or more subtasks that communicate and cooperate to
form a single application. Users submit jobs from their sites
to a metacomputing system by sending their tasks alongwith
Quality of Service (QoS) requirements.

Task scheduling in a distributed system is a classic prob-
lem (for a detailed classification see [5, 6]). Recently, there
have been several works on scheduling tasks in metacom-
puting systems. Scheduling independent jobs (meta-tasks)
has been considered in [2, 11, 14]. For application tasks
represented by Directed Acyclic Graphs (DAGs), many dy-
namic scheduling algorithms have been devised. These in-
clude the Hybrid Remapper [20], the Generational algo-
rithm [9], as well as others [15, 18]. Several static algo-
rithms for scheduling DAGs in metacomputing systems are
described in [16, 23, 24, 25, 27]. Most of the previous algo-
rithms focus on compute cycles as the main resource. Also,
previous DAGs scheduling algorithms assume that a sub-
task receives all its input data from its predecessor subtasks.
Therefore, their scheduling decisions are based on machine
performance for the subtasks and the cost of receiving input

data from predecessor subtasks only.

Many metacomputing applications need other resources,
such as data repositories, in addition to compute resources.
For example, in data-intensive computing [21] applications
access high-volume data from distributed data repositories
such as databases and archival storage systems. Most of
the execution time of these applications is in data move-
ment. These applications can be computationally demand-
ing and communication intensive as well [21]. To achieve
high performance for such applications, the scheduling de-
cisions must be based on all the required resources. Assign-
ing a task to the machine that gives its best execution time
may result in poor performance due to the cost of retriev-
ing the required input data from data repositories. In [4],
the impact of accessing data servers on scheduling decisions
has been considered in the context of developing an AppLes
agent for the Digital Sky Survey Analysis (DSSA) applica-
tion. The DSSA AppLes selects where to run a statistical
analysis according to the amount of required data from data
servers. However, the primary motivation was to optimize
the performance of a particular application.

In this paper we develop a unified framework for resource
scheduling inmetacomputing systems. Our framework con-
siders compute resources as well as other resources such as
the communication network and data repositories. Also, it
incorporates the emerging concept of advance reservations
where system resources can be reserved in advance for spe-
cific time intervals. In our framework, application taskswith
various requirements are submitted from participant sites.
An application task consists of subtasks and is represented
by a DAG. The resource requirements are specified at the
subtask level. A subtask’s input data can be data items from
its predecessors and/or data sets from data repositories. A
subtask is ready for execution if all its predecessors have
completed, and it has received all the input data needed for
its execution. In our framework, we allow for input data sets
to be replicated, i.e., the data set can be accessed from one or
more data repositories. Additionally, a task can be submit-
ted with QoS requirements, such as needed compute cycles,
memory, communication bandwidth, maximum completion
time, priority, etc. In our framework, sources of input data
and the execution times of the subtasks on variousmachines
along with their availability are considered simultaneously
to minimize the overall completion time.

Although our unified framework allows many factors to
be taken into account in resource scheduling, in this pa-
per, to illustrate our ideas, we present several heuristic al-
gorithms for a resource scheduling problemwhere the com-
pute resources and the data repositories have advance reser-
vations. These resources are available to schedule subtasks
only during certain time intervals as they are reserved (by
other users) at other times. QoS requirements such as dead-
lines and priorities will be included in future algorithms.

The objective of our resource scheduling algorithms is to
minimize the overall completion time of all the submitted
tasks.
Our research is a part of the MSHN project [22], which

is a collaborative effort between DoD (Naval Postgraduate
School), academia (NPS, USC, Purdue University), and in-
dustry (NOEMIX). MSHN (Management System for Het-
erogeneous Networks) is designing and implementing a Re-
source Management System (RMS) for distributed hetero-
geneous and shared environments. MSHN assumes hetero-
geneity in resources, processes, and QoS requirements. Pro-
cesses may have different priorities, deadlines, and com-
pute characteristics. The goal is to schedule shared compute
and network resources among individualapplications so that
their QoS requirements are satisfied. Our scheduling algo-
rithms, or their derivatives, may be included in the Schedul-
ing Advisor component of MSHN.
This paper is organized as follows. In the next section

we introduce our unified resource scheduling framework. In
Section 3, we present several heuristic algorithms for solv-
ing a general resource scheduling problem which considers
input requirements from data repositories and advance reser-
vations for system resources. Simulation results are pre-
sented in Section 4 to demonstrate the performance of our
algorithms. Finally, Section 5 gives some future research di-
rections.

2. The Scheduling Framework

2.1. Application Model

In the metacomputing system we are considering, n ap-
plication tasks, fT�� � � � � Tng, compete for computational as
well as other resources (such as communication network and
data repositories). Each application task consists of a set of
communicating subtasks. The data dependencies among the
subtasks are assumed to be known and are represented by a
Directed Acyclic Graph (DAG), G � �V�E�. The set of
subtasks of the application to be executed is represented by
V =fv�� v�� � � � � vkgwhere vk � 1, andE represents the data
dependencies and communication between subtasks. eij in-
dicates communication from subtask vi to vj , and jeijj rep-
resents the amount of data to be sent from vi to vj . Figure 1
shows an example with two application tasks. In this exam-
ple, task 1 consists of three subtasks, and task 2 consists of
nine subtasks.
In our framework, QoS requirements are specified for

each task. These requirements include needed compute cy-
cles, memory, communication bandwidth, maximum com-
pletion time, etc. In our model, a subtask’s input data can be
data items from its predecessors and/or data sets from data
repositories. All of a subtask’s input data (the data items and
the data sets) must be retrieved before its execution. After

Task 2Task 1

Figure 1. Example of application tasks

a subtask’s completion, the generated output data may be
forwarded to successor subtasks and/or written back to data
repositories.
In some applications, a subtask may contain sub-

subtasks. For example, Adaptive Signal Processing (ASP)
applications are typically composed of a sequence of com-
putation stages (subtasks). Each stage consists of a number
of identical sub-subtasks (i.e., FFT’s, QR decompositions,
etc.). Each stage repeatedly receives its input from the
previous stage, performs computations, and sends its output
to the next stage.

2.2. System Model

The metacomputing system consists ofm heterogeneous
machines, M =fm��m�� � � � �mmg, and f file servers or
data repositories, S = fs�� s�� � � � � sfg. We assume that an
estimate of the execution time of subtask vi on machine
mj is available at compile-time. These estimated execu-
tion times are given inmatrixECT . Thus,ECT �i� j� gives
the estimated computation time for subtask i on machine
j. If subtask vi cannot be executed on machine mj , then
ECT �i� j� is set to infinity.
System resources may not be available over some time

intervals due to advance reservations. Available time inter-
vals for machine mj are given by MA�j�. Available time
intervals for data repository sj are given by SA�j�. Ma-
trices TR and L give the message transfer time per byte
and the communication latency between machines respec-
tively. MatricesData TR andData L specify the message
transfer time per byte and the communication latency be-

tween the data repositories and the machines, respectively.
DataSet�i� gives the amount of input data sets needed from
data repositories for subtask vi. In systems with multiple
copies of data sets, one or more data repository can provide
the required data sets for that subtask.

2.3. Problem Statement

Our goal is to minimize the overall execution time
for a collection of applications that compete for system
resources. This strategy (i.e., optimizing the performance
of a collection of tasks as opposed to that of a single appli-
cation) has been taken by SmartNet [11] and MSHN [22].
On the other hand, the emphasis in other projects such as
AppLes [3] is to optimize the performance of an individual
application rather than to cooperate with other applications
sharing the resources. Since multiple users share the
resources, optimizing the performance of an individual
application may dramatically affect the completion time of
other applications.

We now formally state our resource scheduling prob-
lem.

Given:

� AMetacomputing system withm machines and f data
repositories,

� Advance reserved times for system resources as given
byMA and SA,

� n application tasks, fT�� � � � � Tng,where each applica-
tion is represented by a DAG,

� Communication latencies and transfer rates among the
various resources in matrices TR, L�Data TR� and
Data L,

� Subtasks execution times on various machines in ma-
trixETC, and

� Amount of input data sets needed from data reposito-
ries for each subtask vi as given byDataSet�i�.

Find a schedule to

Minimize f
n

max
j��

�Finish T ime�Tj �� g�

where the schedule determines, for each subtask, the start
time and the duration of all the resources needed to execute
that subtask.

Subject to the following constraints:

Subtask 1

Subtask 2

Subtask 3

Subtask 4

Subtask 5

Figure 2. Application DAG for the example in
Sec. 2.4

m� m� m�

V� 5 4 8
V� 20 5 3
V� 6 10 4
V� 10 4 2
V� � 6 5

Table 1. Subtask execution times

� A subtask can execute only after all its predecessors
have completed, all inputdata items have been received
from its predecessors, and the input data sets have been
retrieved from one of the data repositories,

� Preserve all advance resource reservations,

� Only one subtask can execute on any machine at any
given time, and

� At most one subtask can access any data repository at
any given time.

2.4. Separated Scheduling Vs. Unified Scheduling

Many scheduling methods exist in the literature for
scheduling application DAGs on compute and network re-
sources. They do not consider data repositories. With the
inclusion of data repositories, one can obtain schedules for
compute resources and data repositories independently and

m� m� m�

S� 5 6 6
S� 1 4 3
S� 4 1.5 5

Table 2. Transfer costs (time units/data unit)

Subtask Amount of the Input Data Repository
Data Set Choices

V� 3 units S� or S�
V� 10 units S� or S�
V� 2 units S� or S�
V� 1 unit S� or S�
V� 5 units S�

Table 3. Input requirements for the subtasks

10 20 30 40 50

S3

S2

S1

M3

M2

M1

Figure 3. Separated scheduling (machines
first)

10 20 30 40 50

S3

S2

S1

M3

M2

M1

Figure 4. Separated scheduling (data reposi-
tories first)

10 20 30 40 50

S3

S2

S1

M3

M2

M1

Figure 5. Unified scheduling

combine the schedules. In this section we show with a sim-
ple example, that this separated approach is not efficient
with respect to completion time.
Figure 2 shows the DAG representation for an applica-

tion task with 5 subtasks. In this example, we assume a fully
connected system with 3 machines and 3 data repositories
(file servers). The subtask execution times (in time units)
are given in Table 1. Table 2 gives the the cost (in time units)
for transferring one data unit from any data repository to any
machine. We assume that each subtask needs an input data
set, which can be retrieved from one or more data reposito-
ries as given in Table 3.
In this example, we are using a simple list scheduling al-

gorithm called the Baseline Algorithm. This algorithm has
been described in [20, 27]. The baseline algorithm is a fast
static algorithm for mapping DAGs in HC environments. It

partitions the subtasks in the DAG into blocks (levels) us-
ing an algorithm similar to the level partitioning algorithm
which will be described in Section 3.1. Then all the sub-
tasks are ordered such that the subtasks in block k come be-
fore the subtasks in block b, where k � b. The subtasks in
the same block are sorted in descending order based on the
number of descendents of each subtask (ties are broken ar-
bitrarily). The subtasks are considered for mapping in this
order. A subtask is mapped to the machine that gives the
minimum completion time for that particular subtask. Since
the original algorithm does not account for the data reposi-
tories, we implemented a modified version of the algorithm.
In the modified version, the algorithm chooses a data repos-
itory that gives the best retrieving time of the input data set.
The schedule based on the separated approach, when

scheduling the machines first, is shown in Figure 3. The
completion time of this schedule is 52 time units. For this
case, we map the application subtasks to the machines as
they are the only resources in the system. Then for each
subtask we choose the data repository that gives the best re-
trieving (delivery) time of the input data set to the previ-
ously mapped machine for this subtask in order to minimize
its completion time. The completion time of the schedule
based on the separated approach, when scheduling the data
repositories first, is 39 time units as shown in Figure 4. For
this case, we map the application subtasks to the data repos-
itories as they are the only system resources. Then for each
subtask we choose the machine that gives the best comple-
tion time for that subtaskwhen using the previouslymapped
data repository to get the required data set for this subtask.
Figure 5 shows the schedule based on the unified approach.
The completion time of the unified scheduling is 28.5 time
units. In the unified approach, we map each subtask to a ma-
chine and data repository at the same time in order to mini-
mize its completion time.
The previous example shows clearly that the scheduling

based on the separated approach is not efficient with respect
to completion time. Further, with advance reservations, sep-
arated scheduling can lead to poor utilization of resources
when one type of resource is not available while others are
available.

3. Resource Scheduling Algorithms

In this section, we develop static (compile-time) heuris-
tic algorithms for scheduling tasks in a metacomputing sys-
tem where the compute resources and the data repositories
have advance reservations. These resources are available to
schedule subtasks only during certain time intervals as they
are reserved (by other users) at other times. Although our
framework incorporates the notion of QoS, the algorithms
we present in this paper do not consider QoS. We are cur-
rently working on extending our scheduling algorithms to

Task 2Task 1

Figure 6. Combined DAG for the tasks in Fig. 1

consider QoS requirements such as deadlines, priorities, and
security.

As in state-of-the-art systems, we assume a central sched-
uler with a given set of static application tasks to schedule.
With static applications, the complete set of task to be sched-
uled is known a priori. Tasks from all sites are sent to the
central scheduler to determine the schedule for each sub-
task so that the global objective is achieved. The informa-
tion about the submitted tasks as well as status of various
resources are communicated to the central scheduler. This
centralized scheduler will then make appropriate decisions
and can achieve better utilization of the resources.

Scheduling inmetacomputing systems, even if we sched-
ule based on compute resources only, is known to be NP-
complete. One method is based on the well known list
scheduling algorithm [1, 16, 23]. In list scheduling, all the
subtasks of a DAG are placed in a list according to some pri-
ority assigned to each subtask. A subtask cannot be sched-
uled until all its predecessors have been scheduled. Ready
subtasks are considered for scheduling in order of their pri-
orities. In this section, we develop modified versions of
list scheduling algorithm for our generalized task scheduling
problem with advance resource reservations. Our heuristic
algorithms that are based on the list scheduling are of two
types – level by level scheduling and greedy approach. In
the following, we briefly describe these two types of algo-
rithms.

Task 2Task 1

Level 1

Level 2

Level 3

Level 4

Figure 7. Level partitioning for the combined
DAG in Fig. 6

3.1. Level-By-Level Scheduling

In our framework, application tasks are represented by
DAGs where a node is a subtask and the edges from pre-
decessors represent control flow. Each subtask has compu-
tation cost, data items to be communicated from predeces-
sor subtasks, and data sets from one or more repositories.
A subtask is ready for execution if all its predecessors have
completed, and it has received all the input data needed for
its execution. To facilitate the discussion of our schedul-
ing algorithms, a hypothetical node is created and linked,
with zero communication time links, to the root nodes of
all the submitted DAGs to obtain one combined DAG. This
dummy node has zero computation time. Figure 6 shows the
combined DAG for the two tasks in Figure 1. Now, mini-
mizing the maximum time to complete this combined DAG
achieves our global objective.
In level-by-level heuristic, we first partition the com-

bined DAG into l levels of subtasks. Each level contains in-
dependent subtasks, i.e., there are no dependencies between
the subtasks in the same level. Therefore, all the subtasks in
a level can be executed in parallel once they are ready. Level
0 contains the dummy node. Level 1 contains all subtasks
that do not have any incident edges originaly, i.e., subtasks
withoutany predecessors in the originalDAGs. All subtasks
in level l have no successors. For each subtask vj in level k,
all of its predecessors are in levels 0 to k��, and at least one
of them in level k-1. Figure 7 shows the levels of the com-
bined DAG in Fig. 6. The combined DAG in this example

Level-by-Level Scheduling Algorithm
begin

Combine all submitted DAGs into one DAG.
Do level partitioning for the combined DAG.
For level := 1 to l do

Set Ready to be the set of all subtasks at this level.
While Ready is not empty do

Find FINISH�vi�mmin� smin� for all subtasks inReady, wheremmin is
the machine that gives the minimum completion time for subtask vi
if data repository smin has been used to get the input data set.
Min-FINISH: Choose the subtask vk with the minimum completion time.
Max-FINISH: Choose the subtask vk with the maximum completion time.
Schedule subtask vk to machine mmin and data repository smin.
UpdateMA�mmin� and SA�smin�.
Remove vk from Ready.

end While
end For

end

Figure 8. Pseudo code for the level-by-level scheduling algorithms

has 4 levels.
The scheduler considers subtasks in each level at a time.

Among the subtasks in a particular level i, the subtask with
the minimum completion time will be scheduled first in the
Min-FINISH algorithm and the subtask with the maximum
completion time is scheduled first in theMax-FINISH algo-
rithm. The advance reservations of compute resources and
data repositories are handled by choosing the first-fit time
interval to optimize the completion time of a subtask.
The idea behind the Min-FINISH algorithm, as in algo-

rithmD in [14] and Min-min algorithm in SmartNet [11], is
that at each step, we attempt to minimize the finish time of
the last subtask in the ready set. On the other hand, the idea
in theMax-FINISH, as in algorithm E in [14] and Max-min
algorithm in SmartNet [11], is to minimize the worst case
finishing time for critical subtasks by giving them the op-
portunity to be mapped to their best resources. The pseudo
code for the level-by-level scheduling algorithms is shown
in Figure 8.

3.2. Greedy Approach

Since the subtasks in a specific level i of the combined
DAG belong to different independent tasks, by scheduling
level by level we are creating dependency among various
tasks. Further, the completion times of levels of different
tasks can vary widely, and the level-by-level scheduling al-
gorithms may not perform well. The idea in the greedy
heuristics, Min-FINISH-ALL and Max-FINISH-ALL, is to
consider subtasks in all the levels that are ready to execute

in determining their schedule. This will advance execu-
tion of different tasks by different amounts and will attempt
to achieve the global objective and provide good response
times for short tasks at the same time. As before, we con-
sider both the minimum finish time and the maximum fin-
ish time of all ready subtasks in determining the order of the
subtasks to schedule.
The two greedy algorithms,Min-FINISH-ALL and Max-

FINISH-ALL algorithm, are similar to Min-FINISH and
Max-FINISH respectively. They only differ with respect to
theReady set. In the greedy algorithms, theReady set may
contain subtasks from several levels. Initially, theReady set
contains all subtasks at level 1 from all applications. After
mapping a subtask, the algorithms check if any of its succes-
sors are ready to be considered for scheduling and add them
to Ready set. A subtask cannot be considered for schedul-
ing until all its predecessors have been scheduled.

4. Results and Discussion

For the generalized resource scheduling problem consid-
ered above, it is not clear which variation of the list schedul-
ing will perform best. Our intuition is that scheduling sub-
tasks by considering all resource types together will result in
bounded suboptimal solutions. In order to evaluate the ef-
fectiveness of the scheduling algorithms discussed in Sec-
tions 3.1 and 3.2, we have developed a software simulator
that calculates the completion time for each of them. The in-
put parameters are given to the simulator as fixed values or
as a range of values with a minimum and maximum value.

0

100000

200000

300000

400000

500000

600000

10 20 30 40 50

Number of subtasks

T
im

e
in

 m
iil

is
ec

o
n

d
s

Min-Finish
Max-Finish
Min-Finish-All
Max-Finish-All
Baseline

Figure 9. Simulation results for 20 machines and 6 data repositories with varying number of subtasks

0

100000

200000

300000

400000

500000

600000

700000

10 (3) 20 (6) 30 (9) 40 (12) 50 (15)
Number of Machines (No. of Data

Repositories)

T
im

e
in

 m
ill

is
ec

o
n

d

Min-Finish
Max-Finish
Min-Finish-All
Max-Finish-All
Baseline

Figure 10. Simulation results for 50 subtasks with varying number of machines and data repositories

Subtask execution times, communication latencies, commu-
nication transfer rates, data items amounts, and data sets
amounts, are specified to the simulator as range of values.
The actual values of these parameters are choosen randomly
by the simulator within the specified ranges. The fixed input
parameters are the number of machines, the number of data
repositories, the number of data items, and the total number
of subtasks.
We assume that each task needs an input data set from the

data repositories. This data set can be replicated and may
be retreived from one or more data repositories. Each com-
pute resource and data repository had several slots blocked
at the beginning of the simulation to indicate advance reser-
vations. We compare our scheduling algorithms with sep-
arated version of the baseline algorithm discussed in Sec-
tion 2.4. The simulation results are shown in Figures 9
and 10. In Figure 9, the scheduling algorithms are com-
pared for varyingnumber of subtasks using20machines and
6 data repositories. Figure 10 shows a similar comparison
for varying number of machines and data repositories with
50 subtasks. Our preliminary results show that all four of
our heuristic algorithms seem to have similar performance
with relatively uniform task costs. The simulation results
clearly show that it is advantageous to schedule the system
resources in a unified manner rather than scheduling each
type of resource separately. Our scheduling algorithms have
at least 30% improvment over the baseline algorithmwhich
use the separated approach.

5. Future Work

This work represents, to the best of our knowledge, the
first step towards a unified framework for resource schedul-
ing with emerging constraints that are important in meta-
computing. In this paper, we have considered one such re-
quirement of advance reservations for compute resources
and data repositories in this paper. We are investigating the
question of how advance reservations impact task comple-
tion times. That is, in the scheduling, how soon we want
to reserve a resource for a subtask to avoid waiting for an-
other resource and/or blocking a different subtask. We are
currently working on extending our scheduling algorithms
to consider QoS requirements such as deadlines, priorities,
and security. We are investigating themapping ofQoS spec-
ified at task level to subtasks in our framework.
In our future work we plan to develop scheduling algo-

rithms for dynamic environments with the above mentioned
resource requirements. In a dynamic environment, appli-
cation tasks arrive in a real-time non-deterministic man-
ner. System resources may be removed, or new resources
may be added during run-time. Dynamic scheduling algo-
rithms make use of real-time information and require feed-
back from the system.

References

[1] T. Adam, K. Chandy, and J. Dickson, “A comparison of list
schedules for parallel processing systems,” Comm. of the
ACM, 17(12):685-690, Dec. 1974.

[2] R. Armstrong, D. Hensgen, and T. Kidd, “The relative per-
formance of various mapping algorithm is independent of
sizablevariance in run-time predictions,” 7th Heterogeneous
Computing Workshop (HCW’ 98), pp. 79-87, March 1998.

[3] F. Berman and R. Wolski, “Scheduling from the perspective
of the application,” 5th IEEE International Symposium on
High PerformanceDistributed Computing, August 1996.

[4] F. Berman, “High-Performance schedulers,” in The Grid:
blueprint for new computing infrastructure, I. Foster and C.
Kesselman, ed., Morgan Kaufmann Publishers, San Fran-
cisco, CA, 1999, pp. 279-309.

[5] T. Braun et al., “A Taxonomy for describing matching and
scheduling heuristics for mixed-machines heterogeneous
computing systems,” Workshop on Advances in Parallel
and Distributed Systems (APADS), West Lafayette, IN, Oct.
1998.

[6] T. Casavant and J. Kuhl, ” A Taxonomy of scheduling
in general-purpose distributed computing systems,” IEEE
Trans. on Software Engineering, 14(2):141-154, Feb. 1988.

[7] D. Fernandez-Baca, “Allocating modules to processors in a
distributed system,” IEEE Trans. on Software Engineering,
SE-15(11):1427-1436, Nov. 1989.

[8] I. Foster and C. Kesselman, ed., The Grid: blueprint for
new computing infrastructure,Morgan Kaufmann Publish-
ers, San Francisco, CA, 1999.

[9] R. Freund, B. Carter, D. Watson, E. Keith, and F. Mirabile,
“Generational scheduling for heterogeneous computing sys-
tems,” Int’l Conf. Parallel and Distributed ProcessingTech-
niques and Applications (PDPTA ’96), pp. 769-778, Aug.
1996.

[10] R. Freund,M.Gherrity, S.Ambrosius, M.Campbell, M. Hal-
derman, D. Hensgen, E. Keith, T. Kidd, M. Kussow, J. Lima,
F.Mirabile, L.Moore, B. Rust, andH. J. Siegel, “Scheduling
resources in multi-user, heterogeneous computing environ-
ments with SmarNet,” 7th HeterogeneousComputingWork-
shop (HCW ’98), pp. 184-199, March 1998.

[11] R. Freund, T. Kidd, D. Hensgen, and L. Moore, “SmartNet:
a scheduling framework for heterogeneous computing,” The
International Symposium on Parallel Architectures, Algo-
rithms, and Networks, Beijing, China, June 1996.

[12] R. Freund and H. J. Siegel, “Heterogeneous processing”
IEEE Computer, 26(6):13-17, June 1993.

[13] Globus Web Page. http://www.globus.org.
[14] O. Ibarra and C. Kim, “Heuristic algorithms for scheduling

independent tasks on non identical processors.” Journal of
The ACM, 24(2):280-289, April 1977.

[15] M. Iverson and F. Ozguner, “Dynamic, competitive schedul-
ing of multiple DAGs in a distributed heterogeneous envi-
ronment,” 7th Heterogeneous Computing Workshop (HCW’
98), pp. 70-78, March 1998.

[16] M. Iverson, F. Ozguner, and G. J. Follen, “Parallelizing ex-
isting applications in a distributed heterogeneous environ-
ment,” 4thHeterogeneousComputingWorkshop(HCW’ 95),
pp. 93-100, Apr. 1995.

[17] A. Khokhar, V. K. Prasanna, M. Shaaban, and C. L. Wang,
“ Heterogeneous computing: challenges and opportunities,”
IEEE Computer, 26(6):18-27, June 1993.

[18] C. Leangsuksun, J. Potter, and S. Scott, “Dynamic task
mapping algorithms for a distributed heterogeneouscomput-
ing environment,” 4th HeterogeneousComputing Workshop
(HCW’ 95), pp. 30-34, Apr. 1995.

[19] Legion Web Page. http://legion.virginia.edu.
[20] M. Maheswaran and H. J. Siegel, “A Dynamic matching

and scheduling algorithm for heterogeneous computing sys-
tems,” 7th HeterogeneousComputingWorkshop (HCW ’98),
pp. 57-69,March 1998.

[21] R. Moore, C. Baru, R. Marciano, A. Rajasekar, andM. Wan,
“Data-intensive computing,” in The Grid: blueprint for new
computing infrastructure, I. Foster and C. Kesselman, ed.,
MorganKaufmann Publishers, San Francisco, CA, 1999, pp.
105-129.

[22] MSHNWeb Page. http://www.mshn.org.
[23] B. Shirazi, M. Wang, and G. Pathak, “Analysis and evalua-

tion of heuristic methods for static task scheduling,” Journal
of Parallel and Distributed Computing, 10:222-232, 1990.

[24] P. Shroff, D. W. Watson, N. S. Flann, and R. F. Freund,
“Genetic simulated annealing for schedulingdata-dependent
tasks in heterogeneous environment,” 5th Heterogeneous
Computing Workshop (HCW’ 96), pp. 98-117, Apr. 1996.

[25] G. C. Sih andE. A. Lee, “ACompile-time schedulingheuris-
tic for interconnection-constrained heterogeneous processor
architectures,” IEEE Trans.on Parallel and Distributed Sys-
tems, 4(2):175-187, Feb. 1993.

[26] L. Smarr and C. E. Catlett, “Metacomputing,” Communica-
tions of the ACM, 35(6):45-52, June 1994.

[27] LeeWang, Howard JaySiegel, Vwani P. Roychowdhury,and
AnthonyA.Maciejewski, “TaskMatching andScheduling in
Heterogeneous Computing Environments Using a Genetic-
Algorithm-Based Approach,” 5Journal of Parallel and Dis-
tributed Computing, 47(1):8-22, Nov. 1997.

Biographies
Ammar Alhusaini is a Ph.D. candidate in the Depart-

ment of Electrical Engineering - Systems at the University
of Southern California, Los Angeles, California, USA. His
main research interest is task scheduling in heterogeneous
environments. Mr. Alhusaini received a B.S. degree in
computer engineering from Kuwait University in 1993 and
M.S. degree in computer engineering from the University of
Southern California in 1996. Mr. Alhusaini is a member of
IEEE, IEEE Computer Society, and ACM.
Viktor K. Prasanna (V.K. Prasanna Kumar) is a Pro-

fessor in the Department of Electrical Engineering - Sys-
tems, University of Southern California, Los Angeles. He
received his B.S. in Electronics Engineering from the Ban-
galore University and his M.S. from the School of Automa-
tion, Indian Institute of Science. He obtained his Ph.D. in
Computer Science from Pennsylvania State University in
1983. His research interests include parallel computation,
computer architecture, VLSI computations, and high per-
formance computing for signal and image processing, and

vision. Dr. Prasanna has published extensively and con-
sulted for industries in the above areas. He is widely known
for his pioneering work in reconfigurable architectures and
for his contributions in high performance computing for sig-
nal and image processing and image understanding. He has
served on the organizing committees of several international
meetings in VLSI computations, parallel computation, and
highperformance computing. He also serves on the editorial
boards of the Journal of Parallel and DistributedComputing
and IEEE Transactions on Computers. He is the founding
chair of the IEEE Computer Society Technical Committee
on Parallel Processing. He is a Fellow of the IEEE.
Cauligi Raghavendra is a Senior Engineering Special-

ist in the Computer Science Research Department at the
Aerospace Corporation. He received the Ph.D degree in
Computer Science from University of California at Los An-
geles in 1982. From September 1982 to December 1991 he
was on the faculty of Electrical Engineering-Systems De-
partment at University of Southern California, Los Ange-
les. From January 1992 to July 1997 he was the Boeing
Centennial Chair Professor of Computer Engineering at the
School of Electrical Engineering and Computer Science at
the Washington State University in Pullman. He received
the Presidential Young Investigator Award in 1985 and be-
came an IEEE Fellow in 1997. He is a subject area edi-
tor for the Journal of Parallel and Distributed Computing,
Editor-in-Chief for Special issues in a new journal called
ClusterComputing,Baltzer Science Publishers, and is a pro-
gram committee member for several networks related inter-
national conferences.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

